A New Generative Feature Set Based on Entropy Distance for Discriminative Classification

نویسندگان

  • Alessandro Perina
  • Marco Cristani
  • Umberto Castellani
  • Vittorio Murino
چکیده

Score functions induced by generative models extract fixeddimensions feature vectors from different-length data observations by subsuming the process of data generation, projecting them in highly informative spaces called score spaces. In this way, standard discriminative classifiers such as support vector machines, or logistic regressors are proved to achieve higher performances than a solely generative or discriminative approach. In this paper, we present a novel score space that capture the generative process encoding it in an entropic feature vector. In this way, both uncertainty in the generative model learning step and “local” compliance of data observations with respect to the generative process can be represented. The proposed score space is presented for hidden Markov models and mixture of gaussian and is experimentally validated on standard benchmark datasets; moreover it can be applied to any generative model. Results show how it achieves compelling classification accuracies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals

Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...

متن کامل

Classification of Right/Left Hand Motor Imagery by Effective Connectivity Based on Transfer Entropy in EEG Signal

The right and left hand Motor Imagery (MI) analysis based on the electroencephalogram (EEG) signal can directly link the central nervous system to a computer or a device. This study aims to identify a set of robust and nonlinear effective brain connectivity features quantified by transfer entropy (TE) to characterize the relationship between brain regions from EEG signals and create a hierarchi...

متن کامل

A Hybrid Generative/Discriminative Approach to Semi-Supervised Classifier Design

Semi-supervised classifier design that simultaneously utilizes both labeled and unlabeled samples is a major research issue in machine learning. Existing semisupervised learning methods belong to either generative or discriminative approaches. This paper focuses on probabilistic semi-supervised classifier design and presents a hybrid approach to take advantage of the generative and discriminati...

متن کامل

Discriminative Feature Selection via Multiclass Variable Memory Markov Model

We propose a novel feature selection method based on a variable memory Markov (VMM) model. The VMM was originally proposed as a generative model trying to preserve the original source statistics from training data. We extend this technique to simultaneously handle several sources, and further apply a new criterion to prune out nondiscriminative features out of the model. This results in a multi...

متن کامل

Improving Chernoff criterion for classification by using the filled function

Linear discriminant analysis is a well-known matrix-based dimensionality reduction method. It is a supervised feature extraction method used in two-class classification problems. However, it is incapable of dealing with data in which classes have unequal covariance matrices. Taking this issue, the Chernoff distance is an appropriate criterion to measure distances between distributions. In the p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009